114 research outputs found

    Separate cortical stages in amodal completion revealed by functional magnetic resonance adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objects in our environment are often partly occluded, yet we effortlessly perceive them as whole and complete. This phenomenon is called visual amodal completion. Psychophysical investigations suggest that the process of completion starts from a representation of the (visible) physical features of the stimulus and ends with a completed representation of the stimulus. The goal of our study was to investigate both stages of the completion process by localizing both brain regions involved in processing the physical features of the stimulus as well as brain regions representing the completed stimulus.</p> <p>Results</p> <p>Using fMRI adaptation we reveal clearly distinct regions in the visual cortex of humans involved in processing of amodal completion: early visual cortex – presumably V1 -processes the local contour information of the stimulus whereas regions in the inferior temporal cortex represent the completed shape. Furthermore, our data suggest that at the level of inferior temporal cortex information regarding the original local contour information is not preserved but replaced by the representation of the amodally completed percept.</p> <p>Conclusion</p> <p>These findings provide neuroimaging evidence for a multiple step theory of amodal completion and further insights into the neuronal correlates of visual perception.</p

    Normal tissue toxicity after small field hypofractionated stereotactic body radiation

    Get PDF
    Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Both EGFR kinase and Src-related tyrosine kinases regulate human ether-à-go-go-related gene potassium channels

    No full text
    Human ether-à-go-go-related gene (hERG or Kv11.1) encodes the rapidly activated delayed rectifier K+ current (IKr) in the human heart. Potential regulation of hERG channel by protein tyrosine kinases (PTKs) is not understood. The present study was designed to investigate whether this channel is modulated by PTKs using whole-cell patch clamp technique, and immunoprecipitation and Western blot analysis in HEK 293 cells stably expressing hERG gene. We found that the broad-spectrum PTK inhibitor genistein (30 μM), the selective EGFR (epidermal growth factor receptor) kinase inhibitor AG556 (10 μM) and the Src-family kinase inhibitor PP2 (10 μM) remarkably inhibited hERG channel current (IhERG), and the effects were significantly countered by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (1 mM). Immunoprecipitation and Western blot analysis demonstrated that membrane protein tyrosine phosphorylation of hERG channels was reduced by genistein, AG556, and PP2. The reduction of hERG channel phosphorylation level by genistein, AG556 or PP2 was antagonized by orthovanadate. Single point mutation(s) of Y475A and/or Y611A dramatically attenuated the inhibitory effect of IhERG by PP2 and/or AG556. Our results demonstrate the novel information that IhERG is modulated not only by Src-family kinases, but also by EGFR kinases. Y475 and/or Y611 are likely the preferred phosphorylation sites. Regulation of hERG channels by PTKs modifies the channel activity and thus likely alters electrophysiological properties including action potential duration and cell excitability in human heart and neurons. © 2008 Elsevier Inc. All rights reserved.link_to_subscribed_fulltex

    The interactions between bright light and competing defocus during emmetropization in chicks

    No full text
    2017-2018 > Academic research: refereed > Publication in refereed journal201810 bcrcVersion of RecordPublishe

    Both EGFR kinase and Src-related tyrosine kinases regulate human ether-à-go-go-related gene potassium channels

    No full text
    Human ether-à-go-go-related gene (hERG or Kv11.1) encodes the rapidly activated delayed rectifier K+ current (IKr) in the human heart. Potential regulation of hERG channel by protein tyrosine kinases (PTKs) is not understood. The present study was designed to investigate whether this channel is modulated by PTKs using whole-cell patch clamp technique, and immunoprecipitation and Western blot analysis in HEK 293 cells stably expressing hERG gene. We found that the broad-spectrum PTK inhibitor genistein (30 μM), the selective EGFR (epidermal growth factor receptor) kinase inhibitor AG556 (10 μM) and the Src-family kinase inhibitor PP2 (10 μM) remarkably inhibited hERG channel current (IhERG), and the effects were significantly countered by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (1 mM). Immunoprecipitation and Western blot analysis demonstrated that membrane protein tyrosine phosphorylation of hERG channels was reduced by genistein, AG556, and PP2. The reduction of hERG channel phosphorylation level by genistein, AG556 or PP2 was antagonized by orthovanadate. Single point mutation(s) of Y475A and/or Y611A dramatically attenuated the inhibitory effect of IhERG by PP2 and/or AG556. Our results demonstrate the novel information that IhERG is modulated not only by Src-family kinases, but also by EGFR kinases. Y475 and/or Y611 are likely the preferred phosphorylation sites. Regulation of hERG channels by PTKs modifies the channel activity and thus likely alters electrophysiological properties including action potential duration and cell excitability in human heart and neurons. © 2008 Elsevier Inc. All rights reserved.link_to_subscribed_fulltex
    corecore